手机  |   地图  |   RSS

IGBT模块

  • BSM300GB120DLC
     IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和 N+ 区之间创建了一个J1结。 当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率 MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流); 一个空穴电流(双极)。
  • BSM300GB120DN2
    IGBT管的开通和关断是由栅极电压来控制的,IGBT管的等效电路如图1所示。由图1可知,当栅极加正电压时.MOSFET内形成沟道,并为PNP晶体管提供基极电流,从而使IGBT管导通,此时高耐压的IGBT管也具有低的导通态压降。在栅极上加负电压时,MOSFET内的沟道消失,PNP晶体管的基极电流被切断,IGBT管即关断。IGBT管与M()SFET一样也是电压控制型器件,在它的栅极、发射极间施加十几伏的直流电压.只有微安级的漏电流,基本上不消耗功率,显示了输入阻抗大的优点。IGBT的电路符号仍然没有统一的画法,图1(a)和图1(b)为IGBT管最常见的电路符号。
  • FD400R12KE3
    若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若1GBT的栅极和发射极之间电压为0V,则MOS截止,切断PNP晶体管基极电流的供给,使得晶体管截止。IGBT与MOSFET一样也是电压控制型器件,在它的栅极一发射极间施加十几伏的直流电压,只有μA级的漏电流流过,基本上不消耗功率。)擎住效应或自锁效应:沟道电阻上产生的压降.相当于对J3结施加正偏压。一旦J3开通,栅极就会失去对集电极电流的控制作用。电流失控,动态擎住效应比静态擎住效应所允许的集电极电流小。擎住效应曾限制IGBT电流容量提高,20世纪90年代中后期逐渐解决,即将IGBT与反并联的快速二极管封装在一起,制成模块,成为逆导器件。
  • FZ900R12KE4
    IGBT管的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄,IGBT管的UGE的耐压值为20V,在IGBT管加超出耐压值的电压时,会导致损坏的危险。此外,在栅极一发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高。集电极则有电流流过,这时,如果集电极与发射极间存在高电压,则有可能使IGBT管发热乃至损坏。反向偏置安全工作区(RBSOA):最大集电极电流、最大集射极间电压和最大允许电压上升率确定。
  • FZ900R12KP4
    该参数决定了器件的最高工作电压,这是由内部PNP晶体管所能承受的击穿电压确定的。最大集电极电流包括在一定的壳温下额定直流电流脉宽最大电流。不同厂商产品的标称电流通常为壳温25℃或80℃条件下的额定直流电流。该参数与IGBT的壳温密切相关,而且由于器件实际工作时的壳温一般都较高,所以选用时必须加以重视。在一定的壳温下IGBT允许的最大功耗,该功耗将随壳温升高而下降。栅射间施加一定电压,在一定的结温及集电极电流条件下,集射间饱和通态压降。此压降在集电极电流较小时呈负温度系数,在电流较大时为正温度系数,这一特性使IGBT并联运行也较为容易。
QQ在线咨询
销售电话:
021-31007009
1513253456
2691319466